Feature Ranking and Support Vector Machines Classification Analysis of the NSL-KDD Intrusion Detection Corpus
نویسندگان
چکیده
Currently, signature based Intrusion Detection Systems (IDS) approaches are inadequate to address threats posed to networked systems by zero-day exploits. Statistical machine learning techniques offer a great opportunity to mitigate these threats. However, at this point, statistical based IDS systems are not mature enough to be implemented in realtime systems and the techniques to be used are not sufficiently understood. This study focuses on a recently expanded corpus for IDS analysis. Feature analysis and Support Vector Machines classification are performed to obtain a better understanding of the corpus and to establish a baseline set of results which can be used by other studies for comparison. Results of the classification and feature analysis are discussed.
منابع مشابه
Intrusion Detection in IOT based Networks Using Double Discriminant Analysis
Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملImproving Intrusion Detection using Genetic Linear Discriminant Analysis
The objective of this research is to propose an efficient soft computing approach with high detection rates and low false alarms while maintaining low cost and shorter detection time for intrusion detection. Our results were promising as they showed the new proposed system, hybrid feature selection approach of Linear Discriminant Analysis and Genetic Algorithm (GA) called Genetic Linear Discrim...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013